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Abstract—Cognitive radio is a key technology needed to better
utilize the available spectrum more efficiently. In this paper,
we consider the throughput optimization problem via spectrum
allocation in the cognitive radio based wireless mesh networks
(CR-based WMNs). Unlike prior research, we consider both
the lower layer noncontinuous OFDM features and the physical
interference model in designing our solution. We model the
problem as a mixed integer nonlinear programming (MINLP)
problem and show it to be NP-hard. Both a centralized and
a localized approximation solution are provided to the problem.
Our solution also includes a power information collection process
to mitigate the effects of the propagation gain of power as well
as a post-allocation adjustment process. Real world data is used
in our evaluations to illustrate the effectiveness of our scheme.

Index Terms—Cognitive radio networks, throughput optimiza-
tion.

I. INTRODUCTION

Cognitive radio network (CRN) is promising to be the
key technology that enables next generation communication
networks [1] which utilize the spectrum more efficiently in
an opportunistic fashion without interfering with the primary
users. The emergence of cognitive radio technology could
be a revolution for those wireless networks requiring large
spectrum resources. Wireless mesh networks (WMNs) are
among the most urgent ones. Cognitive radios (CRs) are
desirable for a WMN in which a large volume of traffic is
expected to be delivered, since they are able to utilize available
spectrums more efficiently, thus significantly improving the
network capacity [1]. However, CRs also introduce additional
complexities to bandwidth allocation. In a traditional 802.11-
based WMN, a set of homogeneous channels are always
available to every mesh router. In a CR-based WMN, each
node can access a large number of heterogeneous spectrum
bands, which may spread over a wide range of frequencies.
Different channels can support different transmission ranges
and data rates due to spectrum diversity. This feature will have
a significant impact on route and channel selections.

The majority of existing proposals of throughput opti-
mization take an indirect approach: first, simplify physical
interference conditions into a set of pairwise constraints (i.e.
graph interference model), then distribute spectrum using the
graph model [3]. Such simplification, however, comes at a
high cost. Radio interference is inherently accumulative and

cannot be accurately represented by pair-wise constraints. As a
result, decisions made on top of the graph model could lead to
inefficient allocation or unwanted interference. Also, regarding
to the wide operating spectrum, we must take the character of
spectrum diversity into account. Consequently, the physical
interference model (SINR model), which accurately modeled
the accumulative effect of interference, must be employed.

In this work, we are considering the throughput optimization
problem via spectrum allocation. Unlike previous works, we
employ the SINR interference model to our problem and
propose a comprehensive solution from power measurement to
the routing level. In addition, the emergence of non-continuous
orthogonal frequency division multiplex (NC-OFDM) technol-
ogy in cognitive radio enables a node access multiple channels
simultaneously. We also take this into consideration in our
problem. In summary, a centralized solution with guaranteed
performance bound and a localized solution with high effi-
ciency are introduced. Our contributions are summarized as
the followings:

• We present and formulate the throughput optimization
problem in NC-OFDM CR-based WMN under the SINR
model. We formulate the problem as a mixed integer non-
linear programming problem, which is generally NP-hard.

• We propose a centralized comprehensive approximate
solution. Based on the collected power information, a
centralized solution based on branch-and-bound frame-
work is introduced. The approximate result could be
further enhanced by a post-allocation adjustment.

• We also design a low cost localized solution. Only a
few rounds of broadcasting and small scale linear pro-
gramming are required. The simulation shows that for
most cases, no more than a few rounds (6 as shown in
simulation) are required to converge.

• An extensive simulation study based on a real data set
from GoogleWiFi is performed. The results show that
our centralized solution could achieve more than 90% of
the optimal result in average, while the localized solution
achieves 78%.

The remainder of this paper is organized as follows: In
Section II, we introduce related papers. The network model
and problem definition are presented in Section III. An ap-



proximating centralized solution and a localized solution are
proposed in Section IV and Section V, consecutively. Section
VI is the experiment methods and results. We conclude this
paper in Section VII.

II. RELATED WORKS

Comparing to the traditional wireless network, channel
assignment in a CRN has to deal with different scopes of
spectrum availability. Thus, various distributed approximations
were proposed, which are based on observing local interfer-
ence patterns [4], or on coordinations between CR nodes that
aim at maximizing some system utility [5]. Most recently,
the channel assignment problems in a CRN are studied from
its dynamic nature. In [3], Y. Yuan et.al. propose a time-
spectrum model of the available band. Based on it,a set of
distributed assignment algorithms are developed. In [6], Gai
et.al. assume the spectrum opportunity is unknown and model
it as an arbitrarily-distributed random variable with bounded
support, but unknown mean. Under this model, the assignment
problem is formulated as a combinatorial multi-armed bandit
problem. Different from these works, our target problem is on
the global optimization target of throughput under the SINR
interference model, thus is much more complex.

The SINR model is widely regarded as a better model for
interference characterization. Although such a model is pre-
ferred, there are many difficulties in carrying out an analysis
with this model due to the computational complexities SINR
involves. As a result, there are many previous efforts on single-
hop networks, e.g. [7], [8]. For multi-hop networks, some
efforts study cross-layer problems involving two layers instead
of three layers (physical, link, and network). For example,
in [9], Bhatia and Kodialam optimized power control and
routing while assuming some frequency hopping mechanism
is in place for scheduling, which helps simplify joint consid-
eration of scheduling. These approaches are heuristic at best
and cannot offer any performance guarantee. Different from
these works, we provide a performance-guaranteed centralized
solution along with a fast localized solution.

III. SYSTEM MODEL AND PROBLEM DEFINITION

A. Network Model

We consider a wireless mesh network with a set of CR mesh
routers N consisting of internet gateway nodes NG and non-
gateway nodes N \NG. Each mesh router is associated with a
set of client nodes Ci. Each node i ∈ N senses its environment
and finds a set of available spectrum bands Mi for the given
time instance (i.e., those bands that are currently not used by
primary users), which may not be the same as the available
spectrum bands at other nodes. Without loss of generality, we
assume that the bandwidth of each spectrum band (channel)
is uniformly denoted as W . Denote M as the union of all
spectrum bands among all the nodes in the network, i.e., M =∪

i∈NMi, and each band is identically denoted as m. We also
denote Mij = Mi

∩
Mj , which is the set of common bands

between node i and node j.

B. Interference Model

We apply physical interference model here, for its unique
advantage to characterize accumulative feature of interference.
In this model, concurrent transmissions are allowed and inter-
ference (due to transmissions by non-intended transmitter) is
treated as noise.

The key to compute SINR is to compute the values of
transmitting and receiving power. We assume that every node
sends at constant power of P . Consider a transmission from
node i to node j on band m. We use Pm

ij to denote the
receiving power of node j from node i. When there is
interference from concurrent transmissions on the same band,
the SINR at node of transmission from node i to node j on
band m, denoted as smij , is

smij =
Pm
ij

N0 +
∑

k∈N ,k ̸=i

∑
w∈N ,w ̸=k,j P

m
kj

. (1)

Here, N0 = σW and σ is the ambient Gaussian noise density.
Once a band m ∈ Mi is used by node i for transmission or

reception, this band cannot be used again by node i for other
transmissions or receptions. Formally, we have∑

j∈N
amij +

∑
k∈N

amki ≤ 1. (2)

Here, amij ∈ {0, 1} denotes whether link ij use band m.
According to Shannon capacity formula, the capacity on the

link, from node i to node j, denoted as cij , will be

cij =
∑

m∈Mij

amijW log2(1 + smij ). (3)

C. Problem Definition

We study the problem of throughput optimization in CR-
based WMNs. The major traffic travels between the mesh
clients associated with Ci and NG. N \ NG only serve to
relay the traffic. Thus, we can model this kind of network
as a flow graph G with NG as the source nodes and C as the
flow destination nodes. In graph G, Ei

out is the endpoint set of
outgoing edges starting with node i, and Ei

in is the endpoint set
of incoming edges to i. The throughput optimization problem
in this situation could be defined as:

Definition 1: Aggregated Throughput Optimization Prob-
lem in CR-based WMNs: given a CR-based WMN
{N ,NG, C}, and available spectrum set Mij between node i
and node j, find a spectrum allocation vector X = {amij |i, j ∈
N ,m ∈ Mij , a

m
ij ∈ {0, 1}}, so that the aggregated through-

put between C and NG is maximized.
In short, we are trying to find a spectrum allocation vector.

So that the minimum cut of G can be maximized.
The aggregated throughput could be formally defined as∑
u∈N ,v∈NG

fij , and the flow in each link must follow the
constraint of

fij ≤
∑

m∈Mij

amijW log2(1 + smij ).

Next, we can give the formulation of this problem:



Max F

s.t. F =
∑

u∈Ev
in,v∈NG

fuv (4)

∑
k∈Ei

in

fki −
∑

w∈Ei
out

fiw = 0,

∀i ∈ N \ NG (5)

fij ≤
∑

m∈Mij

amijW log2(1 + smij ),

∀i ∈ N
∪

C, j ∈ Ei
out (6)∑

k∈Ei
in

amki +
∑

w∈Ei
out

xm
iw ≤ 1,

∀i ∈ N , ∀m ∈ Mij ,Mij ̸= Ø (7)

smij =
Pm
ij

N0 +
∑

k∈N ,k ̸=i

∑
w∈N ,w ̸=k,j a

m
ijP

m
kj

,

∀i ∈ N
∪

C, i /∈ NG, j ∈ Ei
out,m ∈ Mij (8)

smij ≥ αamij ,

∀i ∈ N
∪

C, i /∈ NG, j ∈ Ei
out,m ∈ Mij ,Mij ̸= Ø

(9)
fij ≥ 0,

∀i ∈ N
∪

C, i /∈ NG, j ∈ Ei
out,m ∈ Mij ,Mij ̸= Ø,

(10)

where constraint (5) is the flow reservation condition for
each relay mesh router. Constraint (10) is the positive flow
condition.

This problem is modeled in the form of a mixed integer non-
linear programming, which is NP-hard in general [10]. As a
result, we propose approximation algorithms to solve them.

IV. CENTRALIZED SOLUTION

A. Solution Framework

We now give an overview of the solution. The solution
performs the following steps in the following order:

• Initialization: in this step, we take chances to perform
efficient and low cost power measurement to get pmij .
Another step is the construction of the flow graph, so
that the variable of Ei

in and Ei
out will be ensured.

• Approximate solving of the optimization problem: we
adopt the branch-and-bound framework to obtain the
(1− ε) approximation result for the MINLP.

• Post-allocation adjustment process: after the spectrum al-
location, based on the approximate result of the previous
result, the nodes cooperatively increase the link capacity
locally.

B. Proposed Algorithm

1) Initialization: The SINR model introduces extra com-
plexities over the other model by requiring the transmitting
and receiving power at each node. Previous works usually

use propagation gain model to estimate the receiving power.
However, this model is far from the real condition. The
performance gap between optimization based on propagation
model and real data could be found in Fig. 1.

Before scheduling, we have to compute all possible SINR
values to facilitate scheduling. Therefore, it requires to fetch
all the receiving power from all the other nodes in all the
shared spectrum to compute all possible SINR values, which
is too costly. We cut down the cost in two ways. First, we take
advantage of the equation:

P1 − P2 = 20log(
f2
f1

), (11)

to cut down the overhead of transmission in each band to
only one transmission in each node. Here, f1, f2 are the center
frequency of corresponding bands.

On the other hand, now that each node only has to broadcast
once, we could take advantage of simultaneous broadcast in
each node in different channels. A careful schedule will lead
to the least amount of overhead. It could be formalized as:

Minimize T

s.t.
∑
i

xm
i,t ≤ 1, (12)∑

m∈Mij

xm
i,t ≥ 1, ∀j ∈ N (13)

t ≤ T (14)

This is a simple LP problem with an optimal solution.
2) Solving the optimization problem: As stated before, both

targeting problems are NP-hard. Thus, we have to solve it
in an approximate way. We try to follow the branch-and-
bound framework [11] and get a (1 − ε)-approximate result.
This framework requires an upper-bound form of original
problem and a lower-bounded one. With both forms, this
framework solves the problem by splitting the solution space
into multiple small sets and get the best results in all branches.
We follow this framework by first trying to relax those non-
linear conditions, so that the relaxed form of the problem
could serve as the upper-bound in the framework of branch-
and-bound. We also find stricter constraints to serve as the
lower-bound form of the problem.

There are two non-linear conditions: (7) and (10). For the
nonlinear term log2(1 + smij ) = 1

ln2
ln(1 + smij ), we employ

three tangential supports for ln(1 + smij ), which is a convex
hull linear relaxation. Suppose that we have the bounds for
smij , i.e., (smij )L ≤ smij ≤ (smij )U . We introduce a variable
tmij = ln(1 + smij ) and consider how to get a linear relaxation
for tmij . The curve of tmij = ln(1 + smij ) can be bounded
by four segments (or a convex hull). In particular, the three
tangent segments are tangential at points (1 + (smij )L, ln(1 +
(smij )L)), ((1+β), ln(1+β)) and (1+P/N0, ln(1+(smij )U)).
Clearly, smij is upper-bounded by P/N0 and is lower-bounded
by 0. We have:

β =
[1 + P/N0][ln[(1 + P/N0]]

P/N0
− 1, (15)



The convex region, defined by the four segments, can be
described by the following four linear constraints:

tmij − smij ≤ 0 (16)
(1 + β)tmij − smij ≤ (1 + β)[ln(1 + β)− 1] + 1 (17)

tmij [1 + P/N0]− smij

≤ [1 + P/N0][ln(1 + P/N0)− 1] + 1 (18)

As a result, the nonlinear constraint (6) could be rewritten
as:

fij ≤ W
∑

m∈Mij

amij t
m
ij . (19)

For the SINR constraint, we can rewrite it as:

N0s
m
ij + smij

∑
k∈N ,k ̸=i

∑
w∈N ,w ̸=k,j

xm
kwP

m
kj − Pm

ij = 0. (20)

Here, amij , s
m
ij , t

m
ij ≥ 0.

Regarding the relaxed form, we put constraints (5), (6), (8),
(10), (11), (13)-(18) together to form a convex optimization.
Its solution could be noted as Ẑ and serve as the upper-bound.

Regarding the lower-bound, we introduce a stricter con-
straint as

N0s
m
ij + smij

∑
k∈N ,k ̸=i

∑
w∈N ,w ̸=k,j

Pm
kj − Pm

ij = 0, (21)

and put constraints(5), (6), (8), (10), (11), (13)-(17), (19)
together to form a stricter convex optimization problem. Its
solution could serve as the lower-bound in the branch-and-
bound framework.

In the standard branch-and-bound procedure, partitioning is
done by choosing a variable with the largest relaxation error
rate and uses its value in the relaxed solution to divide its
value set into two smaller sets. The reason of this approach
(with the largest relaxation error rate) is that such a variable is
likely to lead to a larger gap between upper and lower-bounds.
Thus, we should partition its value set such that the relaxation
error rate will become smaller. This division (on value set)
also divides the optimization space into two smaller spaces.

As a result, by following the standard branch-and-bound
procedure, we get a (1− ε)-approximation result.

3) Post allocation adjustment: Note that both the relax-
ations have reduced the core variable optimization space,
which makes some better allocation vector values exempted.
Thus, to get a better result, we have to perform the post
allocation adjustment.

The basic idea of this adjustment process is to reallocate
the channels among the minimum cut and its neighbor of the
network, so that the maximum flow of the existing assignment
will be enhanced. This process will be performed for multiple
rounds until the flow value can not be increased. This process
is also performed centrally, as is depicted in Algorithm 1.

Algorithm 1 Post Allocation Adjustment Algorithm
Require: Available band Mi, Mij

Ensure: Channel Assignment vector {amij}
1: Perform a maximum flow algorithm on the assigned flow

network Gf and get the maximum flow value fv and the
minimum cut set Smin

2: for ∀ij ∈ Smin do
3: ρi = |

∑
k∈Ei

in
cki −

∑
w∈Ei

out
ciw|

4: ρj = |
∑

w∈Ej
out

cjw −
∑

k∈Ej
in
ckj |

5: for ∀m ∈ Mij and amij = 0 do
6: Backup original value and let xm

ki = 0, xm
lj =

0, xm
it = 0, xm

jw = 0, ∀k ∈ Ei
in, w ∈ Ej

out, t ∈
Ei

out, l ∈ Ej
in and amij = 1

7: Recompute c
′

ki, c
′

jw, c
′

it, c
′

lj , ∀k ∈ Ei
in, w ∈ Ej

out, t ∈
Ei

out, l ∈ Ej
in

8: ρ
′

i = |
∑

k∈Ei
in
c
′

ki −
∑

w∈Ei
out

c
′

iw|
9: ρ

′

j = |
∑

w∈Ej
out

c
′

jw −
∑

k∈Ej
in
c
′

kj |
10: if ρ

′

i + ρ
′

j ≥ ρi + ρj then
11: Restore the original value of amij , x

m
ki, x

m
lj , x

m
it , x

m
jw,

∀k ∈ Ei
in, w ∈ Ej

out, t ∈ Ei
out, l ∈ Ej

in

12: end if
13: end for
14: end for
15: Perform a maximum flow algorithm on the assigned flow

network Gf with new {amij} and get the maximum flow
value f

′

v and the minimum cut set Smin

16: if f
′

v > fv then
17: fv = f

′

v

18: goto 2;
19: end if

V. LOCALIZED SOLUTION

We use a local heuristic which maximizing the total flow
traveling through. The most sophisticated part of local channel
assignment is to resolve the conflict locally. We manage
to do this via an iterative neighbor consensus process. The
localized algorithm consists of two phases, initialization and
optimization, respectively.

A. Initialization

In the initialization phase, we first perform the power in-
formation collection algorithm and flow graph construction. In
this way, each node i is able to get the Pm

wi, ∀w ∈ N ,m ∈ Mi

and Ei
in, E

i
out. Then, each node shares the information of

Ei
in, E

i
out and {Pm

wi} with its one-hop neighbor set (vi1) by
performing one round of broadcasting. After this, each node
is able to compute the value of ŝmki, ∀k ∈ vi1, which is defined
by the following equation:

ŝmki =
Pm
ki∑

w∈N Pm
wi + σW

(22)

Then, each node broadcasts the {ŝmki} to its neighbor. After
this process, each node i is able to compute its probability to



use channel m in any outgoing edges, denoted by um
i , defined

by the following equation:

um
i = min(1,max({ŝmiw/α,w ∈ Ei

out})) (23)

um
i will also be shared by neighbors. The expected throughput

of each channel is formally defined as:

ĉmkl =
Pm
kl∑

w∈vl
1
um
wPm

wl +
∑

w∈N\vl
1
Pm
wl + σW

(24)

Another broadcast of ĉmkl is required so that each node will
get the expected throughput of each channel in all its incoming
and outgoing edges.

B. Adjustment

In the adjustment process, each node uses the collected
information to solve the following local optimization problem,
denoted as LP1:

Max min(
∑

k∈Ei
in
fki,

∑
w∈Ei

out
fiw) (25)

s. t. fkl =
∑

m∈Mkl
amkl ĉ

m
kl (26)∑

k∈Ei
in
amki +

∑
w∈Ei

out
amiw ≤ 1 (27)

This is a linear programming problem, thus, it can be solved
efficiently. After grabbing the assignment results in node i,
denoted as ami

ij , each assignment should be the consensus
result of both endpoints. Formally, amij = ami

ij ∗ amj
ij . This

requires another broadcast of the assignment results.
The localized algorithm could be summarized as follows:

1) Share the assignment result with two-hop neighbors via
two rounds of broadcasting.

2) Each node recomputes the expected throughput of each
unassigned channel m in each of the incoming links.

c̃mkl =
Pm
kl∑

w∈vl
1

∪
vl
2
amwlP

m
wl +

∑
w∈N\(vl

1

∪
vl
2)
Pm
wl + σW

(28)
3) Recompute the aggregated throughput of node i un-

der the current assignment {aik, k ≥ 1}, which
is min(

∑
k∈Ei

in
fki,

∑
w∈Ei

out
fiw). If the aggregated

throughput is not increased, use {aik−1} as the final
assignment of node i and terminate the algorithm.

4) Based on the c̃mkl, resolve the optimization problem
LP1 again for all the unassigned channel m, without
modifying the existing assignment where amij = 1.

5) Make a consensus for the assignment from both end-
points.

6) If no more links are assigned, the algorithm terminates;
otherwise, go to step 1.

Because each node has limited channels and each round will
make at least one assignment, this algorithm will eventually
converge.

VI. EVALUATION

A. Simulation Settings

For one set of network settings, we have to give out the mesh
node set N , gateway node set NG, the available channel set
Mi in each node, and finally, the receiving power from node
i to node j in band m as Pm

ij .
Our network settings are based on GoogleWiFi Trace.

Clearly, this data set is not cognitive radio data. However, we
can use the power and position information to generate our
network scenarios.

Generally, we extract network scenarios in this way: Ran-
domly pick n number of nodes from GoogleWiFi Trace.
We also set the total operating bandwidth to approximately
2.4GHz, with m number of orthogonal channels of 20MHz,
which is the general settings in IEEE 802.11. We use the trace
data to generate {Pm

ij }. We assume that the trace data of the
RSSI (Receiving Signal Strength Index) in node j from node
i in band l is P l

ij , where l is the band centered at 2.4GHz.
In WiFi, the RSSI is enclosed in the packet. Thus, we are not
able to get P l

ij when a packet transmitted from node i to node
j cannot be decoded.

The available channels in each node are constrained by
the PU nodes. We randomly deploy a certain number of PU
nodes with assigned working channels. All the nodes within
the communication range of PU could not share the same
channels.

In this way, one simulation scenario is generated. We
generate 200 scenarios to perform a statistical performance
comparison evaluation.

B. Simulation Results

Based on the generated scenarios, we perform a statistic
evaluation on the performance and cost of our algorithms.

1) Effectiveness of Power Collection: Compared to pervi-
ous work, the major difference is that we use a power infor-
mation collection procedure instead of the power propagation
model to measure the interference. We conduct a statistical
evaluation of its effectiveness over the propagation model
based on the positions. The cumulative results are shown in
Fig. 1. From this figure, we can tell that the power information
collection procedure helps the centralized solution to enhance
its performance and mitigate the performance degradation
introduced by the inaccurate model of power propagation gain
model.

2) Effectiveness and Overhead of Post-Allocation Adjust-
ment: To evaluate the effectiveness of our proposed post-
allocation adjustment, we also compare the performance of
centralized solution without adjustment, and also the one with
adjustment. Both algorithms are conducted upon all scenarios.
The results are shown in a CDF form in Fig. 3. We can see
that the post-allocation adjustment indeed improves the overall
throughput.

In terms of the cost of the post-allocation adjustment,
we examine the number of iterations for the adjustments
conduced. The results can be found in Fig. 6. We can see
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Fig. 1. Power information collection
vs. propagation model.
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Fig. 2. Centralized solution vs. the
optimal solution and others.
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Fig. 3. Without adjustment vs. With
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Fig. 4. Localized solution vs. cen-
tralized and optimal solution.

5 10 15 20 25 30
0

1

2

3

4

5

6

7

 

 

R
ou

nd
s

Network Size

Fig. 5. Cost of localized solution.
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Fig. 6. Cost of post-allocation ad-
justment.

that, regardless of the network size, the adjustment will be
terminated in no more than 7 rounds. Especially, for most of
the cases, the adjustment will be finished around 3-6 rounds.

3) Performance of Centralized Solution: To better un-
derstand the performance of our comprehensive centralized
solution, we compare our algorithm not only with the optimal
results, but also with the algorithms introduced in the last
section. They are denoted as Mobi05 [12] and TMC10 [13],
respectively. To obtain the optimal results, this group of exper-
iments is not conducted upon scenarios with over 20 nodes.
The results in Fig. 2 show that our algorithm outperforms both
algorithms in the control group. There is still a margin between
ours and the optimal results.

4) Performance and Overhead of Localized Solution: We
evaluate our localized solution by comparing it with the
centralized solution and the optimal results. They are all
conducted in scenarios with less than 20 nodes. We can see the
results in Fig. 4. The average result shows that the localized
solution achieves approximately 78% of optimal results.

Regarding the overhead of the localized solution, we mea-
sure its convergence speed in terms of the number of iterations.
The results are in Fig. 5. The convergent iteration is surpris-
ingly as good as no more than 6. For most of the cases, despite
the size of the network, the algorithm will terminate within 4
rounds.

VII. CONCLUSION

We study the throughput optimization problems via spec-
trum allocation in CR-based WMNs under the physical in-
terference model. This problem has been modeled as a mixed
integer non-linear programming problem. Both centralized and
localized solutions are proposed to solve it, approximately. The
centralized solution follows the branch-and-bound framework,

thus, providing (1−ε)-approximate results. Along with solving
the MINLP, a power collection procedure to replace the prop-
agation gain model and a post-allocation adjustment process
are proposed to form a comprehensive solution. We propose
a localized solution to this problem as well. A comprehensive
statistical evaluation based on real data is conducted. The
simulation results illustrate the effectiveness of our proposed
solutions.
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